Blockchain-enabled Federated Learning: A Survey

Author:

Qu Youyang1,Uddin Md Palash2,Gan Chenquan3,Xiang Yong2ORCID,Gao Longxiang4,Yearwood John2

Affiliation:

1. Data61, Commonwealth Scientific and Industrial Research Organisation, Australia

2. School of Information Technology, Deakin University, Australia

3. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, China

4. Qilu University of Technology (Shandong Academy of Sciences), and Shandong Computer Science Center (National Supercomputer Center in Jinan), China

Abstract

Federated learning (FL) has experienced a boom in recent years, which is jointly promoted by the prosperity of machine learning and Artificial Intelligence along with emerging privacy issues. In the FL paradigm, a central server and local end devices maintain the same model by exchanging model updates instead of raw data, with which the privacy of data stored on end devices is not directly revealed. In this way, the privacy violation caused by the growing collection of sensitive data can be mitigated. However, the performance of FL with a central server is reaching a bottleneck, while new threats are emerging simultaneously. There are various reasons, among which the most significant ones are centralized processing, data falsification, and lack of incentives. To accelerate the proliferation of FL, blockchain-enabled FL has attracted substantial attention from both academia and industry. A considerable number of novel solutions are devised to meet the emerging demands of diverse scenarios. Blockchain-enabled FL provides both theories and techniques to improve the performance of FL from various perspectives. In this survey, we will comprehensively summarize and evaluate existing variants of blockchain-enabled FL, identify the emerging challenges, and propose potentially promising research directions in this under-explored domain.

Funder

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3