Relation-aware Meta-learning for E-commerce Market Segment Demand Prediction with Limited Records
Author:
Affiliation:
1. Alibaba Group, Hangzhou, China
2. Pennsylvania State University, Palo Alto, PA, USA
3. University of Notre Dame, South Bend, IN, USA
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3437963.3441750
Reference37 articles.
1. Marcin Andrychowicz Misha Denil Sergio Gomez Matthew W Hoffman David Pfau Tom Schaul Brendan Shillingford and Nando De Freitas. 2016. Learning to learn by gradient descent by gradient descent. In NeurIPS . 3981--3989. Marcin Andrychowicz Misha Denil Sergio Gomez Matthew W Hoffman David Pfau Tom Schaul Brendan Shillingford and Nando De Freitas. 2016. Learning to learn by gradient descent by gradient descent. In NeurIPS . 3981--3989.
2. XGBoost
3. Chelsea Finn Pieter Abbeel and Sergey Levine. 2017. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In ICML . 1126--1135. Chelsea Finn Pieter Abbeel and Sergey Levine. 2017. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In ICML . 1126--1135.
4. Chelsea Finn and Sergey Levine. 2018. Meta-learning and universality: Deep representations and gradient descent can approximate any learning algorithm. In ICLR . Chelsea Finn and Sergey Levine. 2018. Meta-learning and universality: Deep representations and gradient descent can approximate any learning algorithm. In ICLR .
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. MDL: Industrial carbon emission prediction method based on meta-learning and diff long short-term memory networks;PLOS ONE;2024-09-06
2. MulSTE: A Multi-view Spatio-temporal Learning Framework with Heterogeneous Event Fusion for Demand-supply Prediction;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
3. Distributed unsupervised meta-learning algorithm over multi-agent systems;Digital Communications and Networks;2024-08
4. Multi-Agent Chronological Planning with Model-Agnostic Meta Reinforcement Learning;Applied Sciences;2023-08-11
5. Serverless Federated AUPRC Optimization for Multi-Party Collaborative Imbalanced Data Mining;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3