STADS

Author:

Böhme Marcel1ORCID

Affiliation:

1. National University of Singapore and Monash University, Australia

Abstract

A fundamental challenge of software testing is the statistically well-grounded extrapolation from program behaviors observed during testing. For instance, a security researcher who has run the fuzzer for a week has currently no means (1) to estimate the total number of feasible program branches, given that only a fraction has been covered so far; (2) to estimate the additional time required to cover 10% more branches (or to estimate the coverage achieved in one more day, respectively); or (3) to assess the residual risk that a vulnerability exists when no vulnerability has been discovered. Failing to discover a vulnerability does not mean that none exists—even if the fuzzer was run for a week (or a year). Hence, testing provides no formal correctness guarantees . In this article, I establish an unexpected connection with the otherwise unrelated scientific field of ecology and introduce a statistical framework that models Software Testing and Analysis as Discovery of Species (STADS). For instance, in order to study the species diversity of arthropods in a tropical rain forest, ecologists would first sample a large number of individuals from that forest, determine their species, and extrapolate from the properties observed in the sample to properties of the whole forest. The estimations (1) of the total number of species, (2) of the additional sampling effort required to discover 10% more species, or (3) of the probability to discover a new species are classical problems in ecology. The STADS framework draws from over three decades of research in ecological biostatistics to address the fundamental extrapolation challenge for automated test generation. Our preliminary empirical study demonstrates a good estimator performance even for a fuzzer with adaptive sampling bias—AFL, a state-of-the-art vulnerability detection tool. The STADS framework provides statistical correctness guarantees with quantifiable accuracy.

Funder

National Cybersecurity R8D Program TSUNAMi

National Research Foundation, Prime Minister's Office, Singapore

National Cybersecurity R8D Directorate

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference131 articles.

1. Species identification by experts and non-experts: Comparing images from field guides;Austen Gail E.;Nature - Scientific Reports,2016

2. SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr

3. The Oracle Problem in Software Testing: A Survey

4. Yves Basset Lukas Cizek Philippe Cuénoud Raphael K. Didham François Guilhaumon Olivier Missa Vojtech Novotny Frode Ødegaard Tomas Roslin Jürgen Schmidl Alexey K. Tishechkin Neville N. Winchester David W. Roubik Henri-Pierre Aberlenc Johannes Bail Héctor Barrios Jon R. Bridle Gabriela Castaño-Meneses Bruno Corbara Gianfranco Curletti Wesley Duarte da Rocha Domir De Bakker Jacques H. C. Delabie Alain Dejean Laura L. Fagan Andreas Floren Roger L.Kitching Enrique Medianero Scott E. Miller Evandro Gama de Oliveira Jérôme Orivel Marc Pollet Mathieu Rapp Sérvio P. Ribeiro Yves Roisin Jesper B. Schmidt Line Sørensen and Maurice Leponce. 2012. Arthropod diversity in a tropical forest. Science 338 6113 (2012) 1481--1484. Yves Basset Lukas Cizek Philippe Cuénoud Raphael K. Didham François Guilhaumon Olivier Missa Vojtech Novotny Frode Ødegaard Tomas Roslin Jürgen Schmidl Alexey K. Tishechkin Neville N. Winchester David W. Roubik Henri-Pierre Aberlenc Johannes Bail Héctor Barrios Jon R. Bridle Gabriela Castaño-Meneses Bruno Corbara Gianfranco Curletti Wesley Duarte da Rocha Domir De Bakker Jacques H. C. Delabie Alain Dejean Laura L. Fagan Andreas Floren Roger L.Kitching Enrique Medianero Scott E. Miller Evandro Gama de Oliveira Jérôme Orivel Marc Pollet Mathieu Rapp Sérvio P. Ribeiro Yves Roisin Jesper B. Schmidt Line Sørensen and Maurice Leponce. 2012. Arthropod diversity in a tropical forest. Science 338 6113 (2012) 1481--1484.

5. A. Bertolino. 2007. Software testing research: Achievements challenges dreams. In Future of Software Engineering (FOSE’07). 85--103. 10.1109/FOSE.2007.25 A. Bertolino. 2007. Software testing research: Achievements challenges dreams. In Future of Software Engineering (FOSE’07). 85--103. 10.1109/FOSE.2007.25

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MicroFuzz: An Efficient Fuzzing Framework for Microservices;Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Practice;2024-04-14

2. Extrapolating Coverage Rate in Greybox Fuzzing;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

3. Curiosity-Driven Testing for Sequential Decision-Making Process;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

4. DiPri : Distance-based Seed Prioritization for Greybox Fuzzing;ACM Transactions on Software Engineering and Methodology;2024-03-26

5. Statistical Reachability Analysis;Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3