An Experimental Analysis of Security Vulnerabilities in Industrial IoT Devices

Author:

Jiang Xingbin1,Lora Michele1ORCID,Chattopadhyay Sudipta1

Affiliation:

1. Singapore University of Technology and Design, Somapah Rd, Singapore

Abstract

The revolutionary development of the Internet of Things has triggered a huge demand for Internet of Things devices. They are extensively applied to various fields of social activities, and concerning manufacturing, they are a key enabling concept for the Industry 4.0 ecosystem. Industrial Internet of Things (IIoT) devices share common vulnerabilities with standard IoT devices, which are increasingly exposed to the attackers. As such, connected industrial devices may become sources of cyber, as well as physical, threats for people and assets in industrial environments. In this work, we examine the attack surfaces of a networked embedded system, composed of devices representative of those typically used in the IIoT field. We carry on an analysis of the current state of the security of IIoT technologies. The analysis guides the identification of a set of attack vectors for the examined networked embedded system. We set up the corresponding concrete attack scenarios to gain control of the system actuators and perform some hazardous operations. In particular, we propose a couple of variations of Mirai attack specifically tailored for attacking industrial environments. Finally, we discuss some possible

Funder

Keysight Technologies

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cybersecurity threats in FinTech: A systematic review;Expert Systems with Applications;2024-05

2. Security Weaknesses in IoT Management Platforms;IEEE Internet of Things Journal;2024-01-01

3. Security Incidents and Security Requirements in Internet of Things (IoT) Devices;Advances in Business Information Systems and Analytics;2023-11-24

4. FL-SERENADE: Federated Learning for SEmi-supeRvisEd Network Anomaly DEtection. A Case Study;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

5. Scheduling Optimization Design of IoT Embedded System Based on Improved RMS Algorithm;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3