Understanding data center traffic characteristics

Author:

Benson Theophilus1,Anand Ashok1,Akella Aditya1,Zhang Ming2

Affiliation:

1. University of Wisconsin, Madison, WI, USA

2. Microsoft, Redmond, WA, USA

Abstract

As data centers become more and more central in Internet communications, both research and operations communities have begun to explore how to better design and manage them. In this paper, we present a preliminary empirical study of end-to-end traffic patterns in data center networks that can inform and help evaluate research and operational approaches. We analyze SNMP logs collected at 19 data centers to examine temporal and spatial variations in link loads and losses. We find that while links in the core are heavily utilized the ones closer to the edge observe a greater degree of loss. We then study packet traces collected at a small number of switches in one data center and find evidence of ON-OFF traffic behavior. Finally, we develop a framework that derives ON-OFF traffic parameters for data center traffic sources that best explain the SNMP data collected for the data center. We show that the framework can be used to evaluate data center traffic engineering approaches. We are also applying the framework to design network-level traffic generators for data centers.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Reference9 articles.

1. The network simulator -- ns-2. http://www.isi.edu/nsnam/ns/. http://www.isi.edu/nsnam/ns/. The network simulator -- ns-2. http://www.isi.edu/nsnam/ns/. http://www.isi.edu/nsnam/ns/.

2. A scalable, commodity data center network architecture

3. Guidelines for interdomain traffic engineering

4. Towards a next generation data center architecture

5. On the self-similar nature of Ethernet traffic (extended version)

Cited by 204 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3