A Semi-Boosted Nested Model With Sensitivity-Based Weighted Binarization for Multi-Domain Network Intrusion Detection

Author:

Mikhail Joseph W.1ORCID,Fossaceca John M.1,Iammartino Ronald1

Affiliation:

1. George Washington University, Washington, DC

Abstract

Effective network intrusion detection techniques are required to thwart evolving cybersecurity threats. Historically, traditional enterprise networks have been researched extensively in this regard. However, the cyber threat landscape has grown to include wireless networks. In this article, the authors present a novel model that can be trained on completely different feature sets and applied to two distinct intrusion detection applications: traditional enterprise networks and 802.11 wireless networks. This is the first method that demonstrates superior performance in both aforementioned applications. The model is based on a one-versus-all binary framework comprising multiple nested sub-ensembles. To provide good generalization ability, each sub-ensemble contains a collection of sub-learners, and only a portion of the sub-learners implement boosting. A class weight based on the sensitivity metric (true-positive rate), learned from the training data only, is assigned to the sub-ensembles of each class. The use of pruning to remove sub-learners that do not contribute to or have an adverse effect on overall system performance is investigated as well. The results demonstrate that the proposed system can achieve exceptional performance in applications to both traditional enterprise intrusion detection and 802.11 wireless intrusion detection.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference75 articles.

1. Intrusion detection system: A comprehensive review

2. Intrusion detection in computer networks by a modular ensemble of one-class classifiers

3. Winning the KDD99 classification cup

4. A study on NSL-KDD dataset for intrusion detection system based on classification algorithms;Dhanabal L.;Int. J. Adv. Res. Comput. Commun. Eng.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3