On Estimating the Feasible Solution Space of Multi-objective Testing Resource Allocation

Author:

Zhang Guofu1ORCID,Li Lei1ORCID,Su Zhaopin1ORCID,Yue Feng1ORCID,Chen Yang2ORCID,Li Miqing3ORCID,Yao Xin4ORCID

Affiliation:

1. Intelligent Interconnected Systems Laboratory of Anhui Province, Anhui Province Key Laboratory of Industry Safety and Emergency Technology, and the School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China

2. Government & Enterprise Customer Department, China Mobile Group Anhui Company Limited, Hefei, China

3. School of Computer Science, The University of Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland

4. Shenzhen Key Laboratory of Computational Intelligence and the Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China

Abstract

The multi-objective testing resource allocation problem (MOTRAP) is concerned on how to reasonably plan the testing time of software testers to save the cost and improve the reliability as much as possible. The feasible solution space of a MOTRAP is determined by its variables (i.e., the time invested in each component) and constraints (e.g., the pre-specified reliability, cost, or time). Although a variety of state-of-the-art constrained multi-objective optimisers can be used to find individual solutions in this space, their search remains inefficient and expensive due to the fact that this space is very tiny compared to the large search space. The decision maker may often suffer a prolonged but unsuccessful search that fails to return a feasible solution. In this work, we first formulate a heavily constrained MOTRAP on the basis of an architecture-based model, in which reliability, cost, and time are optimised under the pre-specified multiple constraints on reliability, cost, and time. Then, to estimate the feasible solution space of this specific MOTRAP, we develop theoretical and algorithmic approaches to deduce new tighter lower and upper bounds on variables from constraints. Importantly, our approach can help the decision maker identify whether their constraint settings are practicable, and meanwhile, the derived bounds can just enclose the tiny feasible solution space and help off-the-shelf constrained multi-objective optimisers make the search within the feasible solution space as much as possible. Additionally, to further make good use of these bounds, we propose a generalised bound constraint handling method that can be readily employed by constrained multi-objective optimisers to pull infeasible solutions back into the estimated space with theoretical guarantee. Finally, we evaluate our approach on application and empirical cases. Experimental results reveal that our approach significantly enhances the efficiency, effectiveness, and robustness of off-the-shelf constrained multi-objective optimisers and state-of-the-art bound constraint handling methods at finding high-quality solutions for the decision maker. These improvements may help the decision maker take the stress out of setting constraints and selecting constrained multi-objective optimisers and facilitate the testing planning more efficiently and effectively.

Funder

Anhui Provincial Key Research and Development Program

Anhui Provincial Natural Science Foundation

Fundamental Research Funds

Central Universities

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3