Data-driven link quality prediction using link features

Author:

Liu Tao1,Cerpa Alberto E.1

Affiliation:

1. University of California, Merced, CA

Abstract

As an integral part of reliable communication in wireless networks, effective link estimation is essential for routing protocols. However, due to the dynamic nature of wireless channels, accurate link quality estimation remains a challenging task. In this article, we propose 4C, a novel link estimator that applies link quality prediction along with link estimation. Our approach is data driven and consists of three steps: data collection, offline modeling, and online prediction. The data collection step involves gathering link quality data, and based on our analysis of the data, we propose a set of guidelines for the amount of data to be collected in our experimental scenarios. The modeling step includes offline prediction model training and selection. We present three prediction models that utilize different machine learning methods, namely, naive Bayes classifier, logistic regression, and artificial neural networks. Our models take a combination of PRR and the physical-layer information, that is, Received Signal Strength Indicator (RSSI), Signal-to-Noise Ratio (SNR), and Link Quality Indicator (LQI) as input, and output the success probability of delivering the next packet. From our analysis and experiments, we find that logistic regression works well among the three models with small computational cost. Finally, the third step involves the implementation of 4C, a receiver-initiated online link quality prediction module that computes the short temporal link quality. We conducted extensive experiments in the Motelab and our local indoor testbeds, as well as an outdoor deployment. Our results with single- and multiple-senders experiments show that with 4C, CTP improves the average cost of delivering a packet by 20% to 30%. In some cases, the improvement is larger than 45%.

Funder

Division of Computer and Network Systems

Center for Information Technology Research in the Interest of Society

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference50 articles.

1. Bursty traffic over bursty links

2. Piecewise linear approximation applied to nonlinear function of a neural network

3. F-LQE: A Fuzzy Link Quality Estimator for Wireless Sensor Networks

4. Radio link quality estimation in wireless sensor networks

5. Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer 380--382. Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer 380--382.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3