Homotopical patch theory

Author:

Angiuli Carlo1,Morehouse Edward1,Licata Daniel R.2,Harper Robert1

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA, USA

2. Wesleyan University, Pittsburgh, PA, USA

Abstract

Homotopy type theory is an extension of Martin-Löf type theory, based on a correspondence with homotopy theory and higher category theory. In homotopy type theory, the propositional equality type becomes proof-relevant, and corresponds to paths in a space. This allows for a new class of datatypes, called higher inductive types, which are specified by constructors not only for points but also for paths. In this paper, we consider a programming application of higher inductive types. Version control systems such as Darcs are based on the notion of patches - syntactic representations of edits to a repository. We show how patch theory can be developed in homotopy type theory. Our formulation separates formal theories of patches from their interpretation as edits to repositories. A patch theory is presented as a higher inductive type. Models of a patch theory are given by maps out of that type, which, being functors, automatically preserve the structure of patches. Several standard tools of homotopy theory come into play, demonstrating the use of these methods in a practical programming context.

Funder

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Homotopy Type Theory for Sewn Quilts;Proceedings of the 11th ACM SIGPLAN International Workshop on Functional Art, Music, Modelling, and Design;2023-08-30

2. Mutants as Patches: Towards a formal approach to Mutation Testing;Foundations of Computing and Decision Sciences;2019-11-25

3. Quotient Inductive-Inductive Types;Lecture Notes in Computer Science;2018

4. Computational higher-dimensional type theory;ACM SIGPLAN Notices;2017-05-11

5. Proof-relevant π-calculus: a constructive account of concurrency and causality;Mathematical Structures in Computer Science;2017-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3