Y-Net: Dual-branch Joint Network for Semantic Segmentation

Author:

Chen Yizhen1,Hu Haifeng1

Affiliation:

1. School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, People’s Republic of China

Abstract

Most existing segmentation networks are built upon a “ U -shaped” encoder–decoder structure, where the multi-level features extracted by the encoder are gradually aggregated by the decoder. Although this structure has been proven to be effective in improving segmentation performance, there are two main drawbacks. On the one hand, the introduction of low-level features brings a significant increase in calculations without an obvious performance gain. On the other hand, general strategies of feature aggregation such as addition and concatenation fuse features without considering the usefulness of each feature vector, which mixes the useful information with massive noises. In this article, we abandon the traditional “ U -shaped” architecture and propose Y-Net, a dual-branch joint network for accurate semantic segmentation. Specifically, it only aggregates the high-level features with low-resolution and utilizes the global context guidance generated by the first branch to refine the second branch. The dual branches are effectively connected through a Semantic Enhancing Module, which can be regarded as the combination of spatial attention and channel attention. We also design a novel Channel-Selective Decoder (CSD) to adaptively integrate features from different receptive fields by assigning specific channelwise weights, where the weights are input-dependent. Our Y-Net is capable of breaking through the limit of singe-branch network and attaining higher performance with less computational cost than “ U -shaped” structure. The proposed CSD can better integrate useful information and suppress interference noises. Comprehensive experiments are carried out on three public datasets to evaluate the effectiveness of our method. Eventually, our Y-Net achieves state-of-the-art performance on PASCAL VOC 2012, PASCAL Person-Part, and ADE20K dataset without pre-training on extra datasets.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference57 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SNIPPET: A Framework for Subjective Evaluation of Visual Explanations Applied to DeepFake Detection;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-06-13

2. ConvMedSegNet: A multi-receptive field depthwise convolutional neural network for medical image segmentation;Computers in Biology and Medicine;2024-06

3. WaRENet: A Novel Urban Waterlogging Risk Evaluation Network;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-05-16

4. Learning Nighttime Semantic Segmentation the Hard Way;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-05-16

5. 3V3D: Three-View Contextual Cross-slice Difference Three-dimensional Medical Image Segmentation Adversarial Network;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3