AdaStreamLite

Author:

Wei Yuheng1ORCID,Xiong Jie2ORCID,Liu Hui1ORCID,Yu Yingtao3ORCID,Pan Jiangtao3ORCID,Du Junzhao1ORCID

Affiliation:

1. Xidian University, Xi'an, Shaanxi, China and Engineering Research Center of Blockchain Technology Application and Evaluation, Ministry of Education, Xi'an, Shaanxi, China

2. Microsoft Research Asia, Shanghai, China and University of Massachusetts Amherst, Amherst, United States

3. Xidian University, Xi'an, Shaanxi, China

Abstract

Streaming speech recognition aims to transcribe speech to text in a streaming manner, providing real-time speech interaction for smartphone users. However, it is not trivial to develop a high-performance streaming speech recognition system purely running on mobile platforms, due to the complex real-world acoustic environments and the limited computational resources of smartphones. Most existing solutions lack the generalization to unseen environments and have difficulty to work with streaming speech. In this paper, we design AdaStreamLite, an environment-adaptive streaming speech recognition tool for smartphones. AdaStreamLite interacts with its surroundings to capture the characteristics of the current acoustic environment to improve the robustness against ambient noise in a lightweight manner. We design an environment representation extractor to model acoustic environments with compact feature vectors, and construct a representation lookup table to improve the generalization of AdaStreamLite to unseen environments. We train our system using large speech datasets publicly available covering different languages. We conduct experiments in a large range of real acoustic environments with different smartphones. The results show that AdaStreamLite outperforms the state-of-the-art methods in terms of recognition accuracy, computational resource consumption and robustness against unseen environments.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic speech recognition using advanced deep learning approaches: A survey;Information Fusion;2024-09

2. Harmonizing Emotions: A Novel Approach to Audio Emotion Classification using Log-Melspectrogram with Augmentation;2024 International Conference on Communication, Computing and Internet of Things (IC3IoT);2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3