Lightweight Multi-party Authentication and Key Agreement Protocol in IoT-based E-Healthcare Service

Author:

Sahu Amiya Kumar1ORCID,Sharma Suraj1,Puthal Deepak2

Affiliation:

1. International Institute of Information Technology Bhubaneswar, Bhubaneswar, Odisha, India

2. Newcastle University, United Kingdom

Abstract

Internet of Things (IoT) is playing a promising role in e-healthcare applications in the recent decades; nevertheless, security is one of the crucial challenges in the current field of study. Many healthcare devices (for instance, a sensor-augmented insulin pump and heart-rate sensor) collect a user’s real-time data (such as glucose level and heart rate) and send them to the cloud for proper analysis and diagnosis of the user. However, the real-time user’s data are vulnerable to various authentication attacks while sending through an insecure channel. Besides that, the attacks may further open scope for many other subsequent attacks. Existing security mechanisms concentrate on two-party mutual authentication. However, an IoT-enabled healthcare application involves multiple parties such as a patient, e-healthcare test-equipment, doctors, and cloud servers that requires multi-party authentication for secure communication. Moreover, the design and implementation of a lightweight security mechanism that fits into the resource constraint IoT-enabled healthcare devices are challenging. Therefore, this article proposes a lightweight, multi-party authentication and key-establishment protocol in IoT-based e-healthcare service access network to counter the attacks in resource constraint devices. The proposed multi-party protocol has used a lattice-based cryptographic construct such as Identity-Based Encryption (IBE) to acquire security, privacy, and efficiency. The study provided all-round analysis of the scheme, such as security, power consumption, and practical usage, in the following ways. The proposed scheme is tested by a formal security tool, Scyther, to testify the security properties of the protocol. In addition, security analysis for various attacks and comparison with other existing works are provided to show the robust security characteristics. Further, an experimental evaluation of the proposed scheme using IBE cryptographic construct is provided to validate the practical usage. The power consumption of the scheme is also computed and compared with existing works to evaluate its efficiency.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference34 articles.

1. Context-aware anonymous authentication protocols in the internet of things dedicated to e-health applications

2. Identity-based encryption from the weil pairing;Boneh Dan;SIAM J. Comput.,2003

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3