AutoScale

Author:

Gandhi Anshul1,Harchol-Balter Mor1,Raghunathan Ram1,Kozuch Michael A.2

Affiliation:

1. Carnegie Mellon University

2. Intel Labs

Abstract

Energy costs for data centers continue to rise, already exceeding $15 billion yearly. Sadly much of this power is wasted. Servers are only busy 10--30% of the time on average, but they are often left on, while idle, utilizing 60% or more of peak power when in the idle state. We introduce a dynamic capacity management policy, AutoScale , that greatly reduces the number of servers needed in data centers driven by unpredictable, time-varying load, while meeting response time SLAs. AutoScale scales the data center capacity, adding or removing servers as needed. AutoScale has two key features: (i) it autonomically maintains just the right amount of spare capacity to handle bursts in the request rate; and (ii) it is robust not just to changes in the request rate of real-world traces, but also request size and server efficiency. We evaluate our dynamic capacity management approach via implementation on a 38-server multi-tier data center, serving a web site of the type seen in Facebook or Amazon, with a key-value store workload. We demonstrate that AutoScale vastly improves upon existing dynamic capacity management policies with respect to meeting SLAs and robustness.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference46 articles.

1. Amazon Inc. 2008. Amazon Elastic Compute Cloud (Amazon EC2). Amazon Inc. 2008. Amazon Elastic Compute Cloud (Amazon EC2).

2. Armbrust M. Fox A. Griffith R. Joseph A. D. Katz R. H. Konwinski A. Lee G. Patterson D. A. Rabkin A. Stoica I. and Zaharia M. 2009. Above the clouds: A Berkeley view of cloud computing. Tech. rep. UCB/EECS-2009-28 EECS Department University of California Berkeley. Armbrust M. Fox A. Griffith R. Joseph A. D. Katz R. H. Konwinski A. Lee G. Patterson D. A. Rabkin A. Stoica I. and Zaharia M. 2009. Above the clouds: A Berkeley view of cloud computing. Tech. rep. UCB/EECS-2009-28 EECS Department University of California Berkeley.

3. The Case for Energy-Proportional Computing

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DRACO: Distributed Resource-aware Admission Control for large-scale, multi-tier systems;Journal of Parallel and Distributed Computing;2024-10

2. Sync-Millibottleneck Attack on Microservices Cloud Architecture;Proceedings of the 19th ACM Asia Conference on Computer and Communications Security;2024-07

3. Designing Cloud Servers for Lower Carbon;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

4. Grunt Attack: Exploiting Execution Dependencies in Microservices;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN);2024-06-24

5. An approach to workload generation for modern data centers: A view from Alibaba trace;BenchCouncil Transactions on Benchmarks, Standards and Evaluations;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3