Fay

Author:

Erlingsson Úlfar1,Peinado Marcus1,Peter Simon1,Budiu Mihai1,Mainar-Ruiz Gloria1

Affiliation:

1. Microsoft Research

Abstract

Fay is a flexible platform for the efficient collection, processing, and analysis of software execution traces. Fay provides dynamic tracing through use of runtime instrumentation and distributed aggregation within machines and across clusters. At the lowest level, Fay can be safely extended with new tracing primitives, including even untrusted, fully optimized machine code, and Fay can be applied to running user-mode or kernel-mode software without compromising system stability. At the highest level, Fay provides a unified, declarative means of specifying what events to trace, as well as the aggregation, processing, and analysis of those events. We have implemented the Fay tracing platform for Windows and integrated it with two powerful, expressive systems for distributed programming. Our implementation is easy to use, can be applied to unmodified production systems, and provides primitives that allow the overhead of tracing to be greatly reduced, compared to previous dynamic tracing platforms. To show the generality of Fay tracing, we reimplement, in experiments, a range of tracing strategies and several custom mechanisms from existing tracing frameworks. Fay shows that modern techniques for high-level querying and data-parallel processing of disagreggated data streams are well suited to comprehensive monitoring of software execution in distributed systems. Revisiting a lesson from the late 1960s [Deutsch and Grant 1971], Fay also demonstrates the efficiency and extensibility benefits of using safe, statically verified machine code as the basis for low-level execution tracing. Finally, Fay establishes that, by automatically deriving optimized query plans and code for safe extensions, the expressiveness and performance of high-level tracing queries can equal or even surpass that of specialized monitoring tools.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference72 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LatenSeer;Proceedings of the 2023 ACM Symposium on Cloud Computing;2023-10-30

2. Performal: Formal Verification of Latency Properties for Distributed Systems;Proceedings of the ACM on Programming Languages;2023-06-06

3. Diagnosing Distributed Systems Through Log Data Analysis;Congress on Smart Computing Technologies;2023

4. Anomaly detection in microservice environments using distributed tracing data analysis and NLP;Journal of Cloud Computing;2022-08-13

5. tprof;Proceedings of the ACM Symposium on Cloud Computing;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3