Identifying Behavioral Factors Leading to Differential Polarization Effects of Adversarial Botnets

Author:

Abstract

In this paper, we utilize a Twitter dataset collected between December 8, 2021 and February 18, 2022, during the lead-up to the 2022 Russian invasion of Ukraine. Our aim is to design a data processing pipeline featuring a high-accuracy Graph Convolutional Network (GCN) based political camp classifier, a botnet detection algorithm, and a robust measure of botnet effects. Our experiments reveal that while the pro-Russian botnet contributes significantly to network polarization , the pro-Ukrainian botnet contributes with moderating effects. To understand the factors leading to these different effects, we analyze the interactions between the botnets and the users, distinguishing between barrier-crossing users, who navigate across different political camps, and barrier-bound users, who remain within their own camps. We observe that the pro-Russian botnet amplifies the barrier-bound partisan users within their own camp most of the time. In contrast, the pro-Ukrainian botnet amplifies the barrier-crossing users on their own camp alongside themselves for the majority of the time.

Publisher

Association for Computing Machinery (ACM)

Subject

Industrial and Manufacturing Engineering

Reference51 articles.

1. The political blogosphere and the 2004 U.S. election

2. H. S. N. Al-Deen and J. A. Hendricks . Social media: usage and impact. Lexington books , 2011 . H. S. N. Al-Deen and J. A. Hendricks. Social media: usage and impact. Lexington books, 2011.

3. E. Alothali , N. Zaki , E. A. Mohamed , and H. Alashwal . Detecting social bots on twitter: a literature review . In 2018 International conference on innovations in information technology (IIT) , pages 175 -- 180 . IEEE, 2018 . E. Alothali, N. Zaki, E. A. Mohamed, and H. Alashwal. Detecting social bots on twitter: a literature review. In 2018 International conference on innovations in information technology (IIT), pages 175--180. IEEE, 2018.

4. C. A. Bail , B. Guay , E. Maloney , A. Combs , D. S. Hillygus , F. Merhout , D. Freelon , and A. Volfovsky . Assessing the russian internet research agency's impact on the political attitudes and behaviors of american twitter users in late 2017 . Proceedings of the national academy of sciences, 117(1):243--250 , 2020 . C. A. Bail, B. Guay, E. Maloney, A. Combs, D. S. Hillygus, F. Merhout, D. Freelon, and A. Volfovsky. Assessing the russian internet research agency's impact on the political attitudes and behaviors of american twitter users in late 2017. Proceedings of the national academy of sciences, 117(1):243--250, 2020.

5. Gephi: An Open Source Software for Exploring and Manipulating Networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3