Advantages of a Statistical Estimation Approach for Clock Frequency Estimation of Heterogeneous and Irregular CGRAs

Author:

Wolf Dennis Leander1ORCID,Spang Christoph2ORCID,Diener Daniel3ORCID,Hochberger Christian1ORCID

Affiliation:

1. Computer Systems Group - TU Darmstadt, Darmstadt, Hessen

2. Embedded Systems and Applications Group - TU Darmstadt, Darmstadt, Hessen

3. Computer Systems Group - TU Darmstadt

Abstract

Estimating the maximum clock frequency of homogeneous Coarse Grained Reconfigurable Arrays/Architectures (CGRAs) with an arbitrary number of Processing Elements (PE) is difficult. Clock frequency estimation of highly heterogeneous CGRAs takes additional factors into account, thus is even more difficult. Main challenges are the heterogeneous set of operators for each Processing Element (PE) and the irregular interconnect (connecting a CGRA’s PEs). Multiple estimation approaches could be reasonable. We propose an optimized statistical estimator, which is based on our prior work. We demonstrate its superiority to state-of-the-art neural networks in terms of accuracy and robustness, especially in situations with a sparse set of training data.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference35 articles.

1. Pierre Baldi. 2011. Autoencoders, unsupervised learning and deep architectures. In Proceedings of the International Conference on Unsupervised and Transfer Learning Workshop (UTLW’11). JMLR.org, Bellevue, WA, 37–50.

2. A 30 Year Retrospective on Dennard's MOSFET Scaling Paper

3. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine

4. Francois Chollet et al. 2015. Keras. Retrieved from https://github.com/fchollet/keras.

5. Djork-Arné Clevert Thomas Unterthiner and Sepp Hochreiter. 2016. Fast and accurate deep network learning by exponential linear units (ELUs). https://www.researchgate.net/publication/284579051_Fast_and_Accurate_Deep_Network_Learning_by_Exponential_Linear_Units_ELUs/citation/download.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3