PaSTG: A Parallel Spatio-Temporal GCN Framework for Traffic Forecasting in Smart City

Author:

He Xianhao1,Hu Yikun1,Liao Qing2,Xiong Hantao1,Yang Wangdong1,Li Kenli1

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha, China

2. School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China

Abstract

Predicting future traffic conditions from urban sensor data is crucial for smart city applications. Recent traffic forecasting methods are derived from Spatio-Temporal Graph Convolution Networks (STGCNs). Despite their remarkable achievements, these spatio-temporal models have mainly been evaluated on small-scale datasets. In light of the rapid growth of the Internet of Things and urbanization, cities are witnessing an increased deployment of sensors, resulting in the collection of extensive sensor data to provide more accurate insights into citywide traffic dynamics. Spatio-temporal graph modeling on large-scale traffic data is challenging due to the memory constraint of the computing device. For traffic forecasting, subgraph sampling from road networks onto multiple devices is feasible. Many GCN sampling methods have been proposed recently. However, combining these with STGCNs degrades performance. This is primarily due to prediction biases introduced by each sampled subgraph, which analyze traffic states from a regional perspective. Addressing these challenges, we introduce a parallel STGCN framework called PaSTG. PaSTG divides the road network into regions, each processed by an individual STGCN in a device. To mitigate regional biases, Aggregation Blocks in PaSTG merge spatial-temporal features from each STBlock. This collaboration enhances traffic forecasting. Furthermore, PaSTG implements pipeline parallelism and employs a graph partition algorithm for optimized pipeline efficiency. We evaluate PaSTG on various STGCNs using three traffic datasets on multiple GPUs. Results demonstrate that our parallel approach applies widely to diverse STGCN models, surpassing existing GCN samplers by up to 57.4% in prediction accuracy. Additionally, the parallel framework achieves speedups of up to 2.87x and 4.70x in training and inference compared to GCN samplers.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3