Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis

Author:

Andrade Ermeson1,Machida Fumio2

Affiliation:

1. Federal Rural University of Pernambuco, Brazil

2. University of Tsukuba, Japan

Abstract

Uncrewed Aerial Vehicles (UAVs) have been used in mission-critical scenarios such as Search and Rescue (SAR) missions. In such a mission-critical scenario, flight autonomy is a key performance metric that quantifies how long the UAV can continue the flight with a given battery charge. In a UAV running multiple software applications, flight autonomy can also be impacted by faulty application processes that excessively consume energy. In this paper, we propose FA-Assure (Fight Autonomy assurance) as a framework to assure the autonomy of a UAV considering faulty application processes through performability modeling and analysis. The framework employs hierarchically-configured stochastic Petri nets (SPNs), evaluates the performability-related metrics, and guides the design of mitigation strategies to improve autonomy. We consider a SAR mission as a case study and evaluate the feasibility of the framework through extensive numerical experiments. The numerical results quantitatively show how autonomy is enhanced by offloading and restarting faulty application processes.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference40 articles.

1. A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems

2. Ermeson Andrade , Fumio Machida , Roberto Pietrantuono , and Domenico Cotroneo . 2020 . Software Aging in Image Classification Systems on Cloud and Edge. In 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE, 342–348 . Ermeson Andrade, Fumio Machida, Roberto Pietrantuono, and Domenico Cotroneo. 2020. Software Aging in Image Classification Systems on Cloud and Edge. In 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE, 342–348.

3. João Bachiega Jr Breno Costa and Aleteia PF Araujo. 2022. Computational Perspective of the Fog Node. arXiv preprint arXiv:2203.07425(2022). João Bachiega Jr Breno Costa and Aleteia PF Araujo. 2022. Computational Perspective of the Fog Node. arXiv preprint arXiv:2203.07425(2022).

4. Fog computing and its role in the internet of things

5. Placement and routing optimization for automated inspection with unmanned aerial vehicles: a study in offshore wind farm;Chung Hwei-Ming;IEEE Transactions on Industrial Informatics,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3