Prediction in financial markets

Author:

Dhar Vasant1

Affiliation:

1. New York University, New York, NY

Abstract

Predictive models in regression and classification problems typically have a single model that covers most, if not all, cases in the data. At the opposite end of the spectrum is a collection of models, each of which covers a very small subset of the decision space. These are referred to as “small disjuncts.” The trade-offs between the two types of models have been well documented. Single models, especially linear ones, are easy to interpret and explain. In contrast, small disjuncts do not provides as clean or as simple an interpretation of the data, and have been shown by several researchers to be responsible for a disproportionately large number of errors when applied to out-of-sample data. This research provides a counterpoint, demonstrating that a portfolio of “simple” small disjuncts provides a credible model for financial market prediction, a problem with a high degree of noise. A related novel contribution of this article is a simple method for measuring the “yield” of a learning system, which is the percentage of in-sample performance that the learned model can be expected to realize on out-of-sample data. Curiously, such a measure is missing from the literature on regression learning algorithms. Pragmatically, the results suggest that for problems characterized by a high degree of noise and lack of a stable knowledge base it makes sense to reconstruct the portfolio of small rules periodically.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference46 articles.

1. Achelis S. 2000. Technical Analysis from A to Z. McGraw-Hill New York NY. Achelis S. 2000. Technical Analysis from A to Z. McGraw-Hill New York NY.

2. A new look at the statistical model identification

3. Earnings Surprise, Market Efficiency, and Expectations

4. Ali K. M. and Pazzani M. J. 1992. Reducing the small disjunct problem by learning probabilistic concept descriptions. In Computational Learning Theory and Natural Learning Systems T. Petsche Ed. The MIT Press Cambridge MA 183--199. Ali K. M. and Pazzani M. J. 1992. Reducing the small disjunct problem by learning probabilistic concept descriptions. In Computational Learning Theory and Natural Learning Systems T. Petsche Ed. The MIT Press Cambridge MA 183--199.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3