On the exploitation of loop-level parallelism in embedded applications

Author:

Kejariwal Arun1,Veidenbaum Alexander V.1,Nicolau Alexandru1,Girkar Milind2,Tian Xinmin2,Saito Hideki2

Affiliation:

1. University of California, Irvine, CA, USA

2. Intel Corporation

Abstract

Advances in the silicon technology have enabled increasing support for hardware parallelism in embedded processors. Vector units, multiple processors/cores, multithreading, special-purpose accelerators such as DSPs or cryptographic engines, or a combination of the above have appeared in a number of processors. They serve to address the increasing performance requirements of modern embedded applications. To what extent the available hardware parallelism can be exploited is directly dependent on the amount of parallelism inherent in the given application and the congruence between the granularity of hardware and application parallelism. This paper discusses how loop-level parallelism in embedded applications can be exploited in hardware and software. Specifically, it evaluates the efficacy of automatic loop parallelization and the performance potential of different types of parallelism, viz., true thread-level parallelism (TLP), speculative thread-level parallelism and vector parallelism, when executing loops. Additionally, it discusses the interaction between parallelization and vectorization. Applications from both the industry-standard EEMBC®, 1 1.1, EEMBC 2.0 and the academic MiBench embedded benchmark suites are analyzed using the Intel® 2 C compiler. The results show the performance that can be achieved today on real hardware and using a production compiler, provide upper bounds on the performance potential of the different types of thread-level parallelism, and point out a number of issues that need to be addressed to improve performance. The latter include parallelization of libraries such as libc and design of parallel algorithms to allow maximal exploitation of parallelism. The results also point to the need for developing new benchmark suites more suitable to parallel compilation and execution. 1 Other names and brands may be claimed as the property of others. 2 Intel is a trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. mTags;ACM SIGOPS Operating Systems Review;2012-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3