Improved Bounds on Fourier Entropy and Min-entropy

Author:

Arunachalam Srinivasan1,Chakraborty Sourav2,Koucký Michal3,Saurabh Nitin4,De Wolf Ronald5

Affiliation:

1. IBM Research, New York, USA

2. Indian Statistical Institute, Kolkata, India

3. Computer Science Institute of Charles University, Prague, Czech Republic

4. Technion-IIT, Haifa, Israel

5. QuSoft, CWI and University of Amsterdam, Amsterdam, the Netherlands

Abstract

Given a Boolean function f:{ -1,1} ^{n}→ { -1,1, define the Fourier distribution to be the distribution on subsets of [n], where each S ⊆ [n] is sampled with probability f ˆ (S) 2 . The Fourier Entropy-influence (FEI) conjecture of Friedgut and Kalai [28] seeks to relate two fundamental measures associated with the Fourier distribution: does there exist a universal constant C > 0 such that H(f ˆ2 ) ≤ C ⋅ Inf (f), where H (fˆ2) is the Shannon entropy of the Fourier distribution of f and Inf(f) is the total influence of f In this article, we present three new contributions toward the FEI conjecture: (1) Our first contribution shows that H(f ˆ2 ) ≤ 2 ⋅ aUC (f), where aUC (f) is the average unambiguous parity-certificate complexity of f . This improves upon several bounds shown by Chakraborty et al. [20]. We further improve this bound for unambiguous DNFs. We also discuss how our work makes Mansour's conjecture for DNFs a natural next step toward resolution of the FEI conjecture. (2) We next consider the weaker Fourier Min-entropy-influence (FMEI) conjecture posed by O'Donnell and others [50, 53], which asks if H ∞ fˆ2) ≤ C ⋅ Inf(f), where H ∞ fˆ2) is the min-entropy of the Fourier distribution. We show H (fˆ2) ≤ 2⋅C min (f), where C min (f) is the minimum parity-certificate complexity of f . We also show that for all ε≥0, we have H (fˆ2) ≤2 log⁡(∥f ˆ ∥1,ε/(1−ε)), where ∥f ˆ ∥1,ε is the approximate spectral norm of f . As a corollary, we verify the FMEI conjecture for the class of read- k DNFs (for constant  k ). (3) Our third contribution is to better understand implications of the FEI conjecture for the structure of polynomials that 1/3-approximate a Boolean function on the Boolean cube. We pose a conjecture: no flat polynomial (whose non-zero Fourier coefficients have the same magnitude) of degree d and sparsity 2 ω(d) can 1/3-approximate a Boolean function. This conjecture is known to be true assuming FEI, and we prove the conjecture unconditionally (i.e., without assuming the FEI conjecture) for a class of polynomials. We discuss an intriguing connection between our conjecture and the constant for the Bohnenblust-Hille inequality, which has been extensively studied in functional analysis.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intermediate Classes of Nuclear Multilinear Operators;Bulletin of the Brazilian Mathematical Society, New Series;2023-10-05

2. Improved bounds for the complex polynomial Bohnenblust–Hille inequality;Journal of Mathematical Analysis and Applications;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3