Decentralized and optimal control of shared resource pools

Author:

Loureiro Emerson1,Nixon Paddy1,Dobson Simon1

Affiliation:

1. University College Dublin, Dublin, Ireland

Abstract

Resource pools are collections of computational resources (e.g., servers) which can be used by different applications in a shared way. A crucial aspect in these pools is to allocate resources so as to ensure their proper usage, taking into account workload and specific requirements of each application. An interesting approach, in this context, is to allocate the resources in the best possible way, aiming at optimal resource usage. Workload, however, varies over time, and in turn, resource demands will vary too. To ensure that optimal resource usage is always in place, resource shares should be defined dynamically and over time. It has been claimed that utility functions are the main tool for enabling such self-optimizing behavior. Whereas many solutions with this characteristic have been proposed to date, none of them presents true decentralization within the context of shared pools. In this article, we then propose a decentralized model for optimal resource usage in shared resource pools, providing practical and theoretical evidence of its feasibility.

Funder

University College Dublin

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Control Allocation Algorithm for a Class of Distributed Control Systems;International Journal of Control, Automation and Systems;2019-09-23

2. An aggregation approach for solving the non-linear fractional equality Knapsack problem;Expert Systems with Applications;2018-11

3. A decentralised solution for coordinating decisions in large-scale autonomic systems;MATEC Web of Conferences;2018

4. A Token-Based Scheme for Coordinating Decisions in Large-Scale Autonomic Systems;2017 IEEE 26th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE);2017-06

5. A Cooperative Predictive Control Approach to Improve the Reconfiguration Stability of Adaptive Distributed Parallel Applications;ACM Transactions on Autonomous and Adaptive Systems;2014-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3