Asynchronous Automata Processing on GPUs

Author:

Liu Hongyuan1ORCID,Pai Sreepathi2ORCID,Jog Adwait3ORCID

Affiliation:

1. William & Mary / The Hong Kong University of Science and Technology (Guangzhou), Williamsburg, VA, USA

2. University of Rochester, Rochester, NY, USA

3. William & Mary / University of Virginia, Williamsburg, VA, USA

Abstract

Finite-state automata serve as compute kernels for many application domains such as pattern matching and data analytics. Existing approaches on GPUs exploit three levels of parallelism in automata processing tasks: 1)~input stream level, 2)~automaton-level and 3)~state-level. Among these, only state-level parallelism is intrinsic to automata while the other two levels of parallelism depend on the number of automata and input streams to be processed. As GPU resources increase, a parallelism-limited automata processing task can underutilize GPU compute resources. To this end, we propose AsyncAP, a low-overhead approach that optimizes for both scalability and throughput. Our insight is that most automata processing tasks have an additional source of parallelism originating from the input symbols which has not been leveraged before. Making the matching process associated with the automata tasks asynchronous, i.e., parallel GPU threads start processing an input stream from different input locations instead of processing it serially, improves throughput significantly and scales with input length. When the task does not have enough parallelism to utilize all the GPU cores, detailed evaluation across 12 evaluated applications shows that AsyncAP achieves up to 58× speedup on average over the state-of-the-art GPU automata processing engine. When the tasks have enough parallelism to utilize GPU cores, AsyncAP still achieves 2.4× speedup.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Reference67 articles.

1. M. Karim Abdalla et al. 2013 . Scheduling and Execution of Compute Tasks. US 2013/0185728A1. M. Karim Abdalla et al. 2013. Scheduling and Execution of Compute Tasks. US 2013/0185728A1.

2. 018)]% mnrl K. Angstadt J. Wadden V. Dang T. Xie D. Kramp W. Weimer M. Stan and K. Skadron. 2018. MNCaRT: An Open-Source Multi-Architecture Automata-Processing Research and Execution Ecosystem. IEEE Computer Architecture Letters (CAL) (2018). 018)]% mnrl K. Angstadt J. Wadden V. Dang T. Xie D. Kramp W. Weimer M. Stan and K. Skadron. 2018. MNCaRT: An Open-Source Multi-Architecture Automata-Processing Research and Execution Ecosystem. IEEE Computer Architecture Letters (CAL) (2018).

3. Scalable Algorithms for NFA Multi-Striding and NFA-Based Deep Packet Inspection on GPUs

4. 009)]% gpgpu-sim A. Bakhoda G.L. Yuan W.W.L. Fung H. Wong and T.M. Aamodt. 2009. Analyzing CUDA Workloads Using a Detailed GPU Simulator. In ISPASS. 009)]% gpgpu-sim A. Bakhoda G.L. Yuan W.W.L. Fung H. Wong and T.M. Aamodt. 2009. Analyzing CUDA Workloads Using a Detailed GPU Simulator. In ISPASS.

5. An improved algorithm to accelerate regular expression evaluation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3