Blink

Author:

Sharma Navin1,Barker Sean1,Irwin David1,Shenoy Prashant1

Affiliation:

1. University of Massachusetts, Amherst, Amherst, MA, USA

Abstract

Reducing the energy footprint of data centers continues to receive significant attention due to both its financial and environmental impact. There are numerous methods that limit the impact of both factors, such as expanding the use of renewable energy or participating in automated demand-response programs. To take advantage of these methods, servers and applications must gracefully handle intermittent constraints in their power supply. In this paper, we propose blinking---metered transitions between a high-power active state and a low-power inactive state---as the primary abstraction for conforming to intermittent power constraints. We design Blink, an application-independent hardware-software platform for developing and evaluating blinking applications, and define multiple types of blinking policies. We then use Blink to design BlinkCache, a blinking version of memcached, to demonstrate the effect of blinking on an example application. Our results show that a load-proportional blinking policy combines the advantages of both activation and synchronous blinking for realistic Zipf-like popularity distributions and wind/solar power signals by achieving near optimal hit rates (within 15% of an activation policy), while also providing fairer access to the cache (within 2% of a syn- chronous policy) for equally popular objects.

Publisher

Association for Computing Machinery (ACM)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Centers as Prosumers in Urban Energy Systems;Sustainable Development Goals Series;2023

2. Combined IT and power supply infrastructure sizing for standalone green data centers;Sustainable Computing: Informatics and Systems;2021-06

3. Category-aware hierarchical caching for video-on-demand content on youtube;Proceedings of the 9th ACM Multimedia Systems Conference;2018-06-12

4. Feasibility of using renewable energy to supply data centers in 60°north latitude;Sustainable Computing: Informatics and Systems;2018-03

5. Experimental study on heat sink with porous copper as conductive material for CPU cooling;Materials Today: Proceedings;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3