Graph Neural Networks for Fast Node Ranking Approximation

Author:

Maurya Sunil Kumar1,Liu Xin2,Murata Tsuyoshi1

Affiliation:

1. Tokyo Institute of Technology, Meguro, Tokyo, Japan

2. AIRC, AIST, Koto-ku, Tokyo, Japan

Abstract

Graphs arise naturally in numerous situations, including social graphs, transportation graphs, web graphs, protein graphs, etc. One of the important problems in these settings is to identify which nodes are important in the graph and how they affect the graph structure as a whole. Betweenness centrality and closeness centrality are two commonly used node ranking measures to find out influential nodes in the graphs in terms of information spread and connectivity. Both of these are considered as shortest path based measures as the calculations require the assumption that the information flows between the nodes via the shortest paths. However, exact calculations of these centrality measures are computationally expensive and prohibitive, especially for large graphs. Although researchers have proposed approximation methods, they are either less efficient or suboptimal or both. We propose the first graph neural network (GNN) based model to approximate betweenness and closeness centrality. In GNN, each node aggregates features of the nodes in multihop neighborhood. We use this feature aggregation scheme to model paths and learn how many nodes are reachable to a specific node. We demonstrate that our approach significantly outperforms current techniques while taking less amount of time through extensive experiments on a series of synthetic and real-world datasets. A benefit of our approach is that the model is inductive, which means it can be trained on one set of graphs and evaluated on another set of graphs with varying structures. Thus, the model is useful for both static graphs and dynamic graphs. Source code is available at https://github.com/sunilkmaurya/GNN_Ranking

Funder

JSPS Grant-In-Aid for Scientific Research

JST CREST

JSPS Grant-In-Aid for Early-Career Scientists

The New Energy and Industrial Technology Development Organization

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference76 articles.

1. Communication Patterns in Task‐Oriented Groups

2. A mathematical model for group structures;Bavelas Alex;Applied Anthropology,1948

3. An improved index of centrality

4. Rianne van den Berg Thomas Kipf and Max Welling. 2017. Graph convolutional matrix completion. arXiv:1706.02263. Retrieved from https://arxiv.org/abs/1706.02263 Rianne van den Berg Thomas Kipf and Max Welling. 2017. Graph convolutional matrix completion. arXiv:1706.02263. Retrieved from https://arxiv.org/abs/1706.02263

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3