Boosting the Priority of Garbage

Author:

Akram Shoaib1,Sartor Jennifer B.2,Craeynest Kenzo Van1,Heirman Wim3,Eeckhout Lieven1

Affiliation:

1. Ghent University, Belgium

2. Ghent University and Vrije Universiteit Brussel, Belgium

3. Intel Corporation, Kontich, Belgium

Abstract

While hardware is evolving toward heterogeneous multicore architectures, modern software applications are increasingly written in managed languages. Heterogeneity was born of a need to improve energy efficiency; however, we want the performance of our applications not to suffer from limited resources. How best to schedule managed language applications on a mix of big, out-of-order cores and small, in-order cores is an open question, complicated by the host of service threads that perform key tasks such as memory management. These service threads compete with the application for core and memory resources, and garbage collection (GC) must sometimes suspend the application if there is not enough memory available for allocation. In this article, we explore concurrent garbage collection’s behavior, particularly when it becomes critical, and how to schedule it on a heterogeneous system to optimize application performance. While some applications see no difference in performance when GC threads are run on big versus small cores, others—those with GC criticality —see up to an 18% performance improvement. We develop a new, adaptive scheduling algorithm that responds to GC criticality signals from the managed runtime, giving more big-core cycles to the concurrent collector when it is under pressure and in danger of suspending the application. Our experimental results show that our GC-criticality-aware scheduler is robust across a range of heterogeneous architectures with different core counts and frequency scaling and across heap sizes. Our algorithm is performance and energy neutral for GC-uncritical Java applications and significantly speeds up GC-critical applications by 16%, on average, while being 20% more energy efficient for a heterogeneous multicore with three big cores and one small core.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing and Improving the Scalability of In-Memory Indices for Managed Search Engines;Proceedings of the 2023 ACM SIGPLAN International Symposium on Memory Management;2023-06-06

2. CASH: correlation-aware scheduling to mitigate soft error impact on heterogeneous multicores;Connection Science;2020-05-18

3. Design, implementation, and application of GPU-based Java bytecode interpreters;Proceedings of the ACM on Programming Languages;2019-10-10

4. To expose, or not to expose, hardware heterogeneity to runtimes;Proceedings of the Conference Companion of the 3rd International Conference on Art, Science, and Engineering of Programming;2019-04

5. Composite-ISA Cores: Enabling Multi-ISA Heterogeneity Using a Single ISA;2019 IEEE International Symposium on High Performance Computer Architecture (HPCA);2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3