Abstract
Searching online text collections can be both rewarding and
frustrating. While valuable information can be found, typically many irrelevant documents are also retrieved, while many relevant ones are missed. Terminology mismatches between the user's query and document contents are a main cause of retrieval failures. Expanding a user's query with related words can improve search performances, but finding and using related words is an open problem. This research uses corpus analysis techniques to automatically discover similar words directly from the contents of the databases which are not tagged with part-of-speech labels. Using these similarities, user queries are automatically expanded, resulting in conceptual retrieval rather than requiring exact word matches between queries and documents. We are able to achieve a 7.6% improvement for TREC 5 queries and up to a 28.5% improvement on the narrow-domain Cystic Fibrosis collection. This work has been extended to multidatabase collections where each subdatabase has a collection-specific similarity matrix associated with it. If the best matrix is selected, substantial search improvements are possible. Various techniques to select the appropriate matrix for a particular query are analyzed, and a 4.8% improvement in the results is validated.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,General Business, Management and Accounting,Information Systems
Reference21 articles.
1. Word association norms, mutual information and lexicography;CHURCH K. W.;Comput. Linguist.,1990
2. Indexing by latent semantic analysis;DEERWESTER S.;J. Am. Soc. Inf. Sci.,1990
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献