A decision-theoretic approach to database selection in networked IR

Author:

Fuhr Norbert1

Affiliation:

1. University of Dortmund

Abstract

In networked IR, a client submits a query to a broker, which is in contact with a large number of databases. In order to yield a maximum number of documents at minimum cost, the broker has to make estimates about the retrieval cost of each database, and then decide for each database whether or not to use it for the current query, and if, how many documents to retrieve from it. For this purpose, we develop a general decision-theoretic model and discuss different cost structures. Besides cost for retrieving relevant versus nonrelevant documents, we consider the following parameters for each database: expected retrieval quality, expected number of relevant documents in the database and cost factors for query processing and document delivery. For computing the overall optimum, a divide-and-conquer algorithm is given. If there are several brokers knowing different databases, a preselection of brokers can only be performed heuristically, but the computation of the optimum can be done similarily to the single-broker case. In addition, we derive a formula which estimates the number of relevant documents in a database based on dictionary information.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing information source selection using a genetic algorithm and social tagging;International Journal of Information Management;2017-12

2. Uncertainty Reasoning for the Semantic Web;Reasoning Web. Semantic Interoperability on the Web;2017

3. Federated Patent Search;Current Challenges in Patent Information Retrieval;2017

4. Evaluating Document Retrieval Methods for Resource Selection in Clustered P2P IR;Proceedings of the 25th ACM International on Conference on Information and Knowledge Management;2016-10-24

5. Towards a probabilistic model for supporting collaborative information access;Information Retrieval Journal;2016-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3