Video Management and Resource Allocation for a Large-Scale VoD Cloud

Author:

Chang Zhangyu1,Chan S.-H. Gary1

Affiliation:

1. The Hong Kong University of Science and Technology, Hong Kong

Abstract

We consider providing large-scale Netflix-like video-on-demand (VoD) service on a cloud platform, where cloud proxy servers are placed close to user pools. Videos may have heterogeneous popularity at different geo-locations. A repository provides video backup for the network, and the proxy servers collaboratively store and stream videos. To deploy the VoD cloud, the content provider rents resources consisting of link capacities among servers, server storage, and server processing capacity to handle remote requests. We study how to minimize the deployment cost by jointly optimizing video management (in terms of video placement and retrieval at servers) and resource allocation (in terms of link, storage, and processing capacities), subject to a certain user delay requirement on video access. We first formulate the joint optimization problem and show that it is NP-hard. To address it, we propose Resource allocation And Video management Optimization (RAVO), a novel and efficient algorithm based on linear programming with proven optimality gap. For a large video pool, we propose a video clustering algorithm to substantially reduce the run-time computational complexity without compromising performance. Using extensive simulation and trace-driven real data, we show that RAVO achieves close-to-optimal performance, outperforming other advanced schemes significantly (often by multiple times).

Funder

Hong Kong Research Grant Council (RGC) General Research Fund

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference39 articles.

1. Unreeling netflix: Understanding and improving multi-CDN movie delivery

2. Prediction-based resource allocation in clouds for media streaming applications

3. David Applegate Aaron Archer Vijay Gopalakrishnan Seungjoon Lee and K. K. Ramakrishnan. 2013. Content placement via the exponential potential function method. In Integer Programming and Combinatorial Optimization. Springer New York NY. 10.1007/978-3-642-36694-9_5 David Applegate Aaron Archer Vijay Gopalakrishnan Seungjoon Lee and K. K. Ramakrishnan. 2013. Content placement via the exponential potential function method. In Integer Programming and Combinatorial Optimization. Springer New York NY. 10.1007/978-3-642-36694-9_5

4. Optimal content placement for a large-scale VoD system

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3