On the role of data balancing for machine learning-based code smell detection
Author:
Affiliation:
1. University of Salerno, Italy
2. Vrije Universiteit Brussel, Belgium
Publisher
ACM Press
Reference50 articles.
1. L. Amorim, E. Costa, N. Antunes, B. Fonseca, and M. Ribeiro. Experience report: Evaluating the effectiveness of decision trees for detecting code smells. In Software Reliability Engineering (ISSRE), 2015 IEEE 26th International Symposium on, pages 261–269. IEEE, 2015.
2. G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering traceability links between code and documentation. IEEE transactions on software engineering, 28(10):970–983, 2002.
3. M. I. Azeem, F. Palomba, L. Shi, and Q. Wang. Machine learning techniques for code smell detection: A systematic literature review and meta-analysis. Information and Software Technology, page in press., 2019.
4. R. Baeza-Yates, B. d. A. N. Ribeiro, et al. Modern information retrieval. New York: ACM Press; Harlow, England: Addison-Wesley„ 2011.
5. J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing cardiovascular risk assessment with advanced data balancing and domain knowledge-driven explainability;Expert Systems with Applications;2024-12
2. A Platform-Agnostic Framework for Automatically Identifying Performance Issue Reports With Heuristic Linguistic Patterns;IEEE Transactions on Software Engineering;2024-07
3. Improving accuracy of code smells detection using machine learning with data balancing techniques;The Journal of Supercomputing;2024-06-05
4. Enhancing software code smell detection with modified cost-sensitive SVM;International Journal of System Assurance Engineering and Management;2024-04-24
5. Deep Learning-Based EEG Signal Classification of Epileptic Patients;2024 International Conference on Expert Clouds and Applications (ICOECA);2024-04-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3