Classifying non-functional requirements using RNN variants for quality software development
Author:
Affiliation:
1. University of Dhaka, Bangladesh
Publisher
ACM Press
Reference14 articles.
1. Jonas Winkler and Andreas Vogelsang. Automatic classification of requirements based on convolutional neural networks. In 2016 IEEE 24th International Requirements Engineering Conference Workshops (REW), pages 39–45. IEEE, 2016.
2. J Cleland-Huang, R Settimi, X Zou, and P Solc. The detection and classification of non-functional requirements with application to early aspects. In 14th Int. Requirements Engineering Conference (RE’06), pages 39–48. IEEE, 2006.
3. Mirza Rehenuma Tabassum, Md Saeed Siddik, Mohammad Shoyaib, and Shah Mostafa Khaled. Determining interdependency among non-functional requirements to reduce conflict. In 2014 International Conference on Informatics, Electronics & Vision (ICIEV), pages 1–6. IEEE, 2014.
4. I Hussain, L Kosseim, and O Ormandjieva. Using linguistic knowledge to classify non-functional requirements in srs documents. In Int. Conf. on Application of Natural Language to Information Systems, pages 287–298. Springer, 2008.
5. Md. Ariful Haque, Md. Abdur Rahman, and Md Saeed Siddik. Non functional requirements classification with machine learning: An empirical study. In International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pages 629–633. IEEE, 2019.
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A deep learning framework for non-functional requirement classification;Scientific Reports;2024-02-08
2. Enhancing Software Requirements Classification with Semisupervised GAN‐BERT Technique;Journal of Electrical and Computer Engineering;2024-01
3. Hybrid SVM-Bidirectional Long Short-Term Memory Model for Fine-Grained Software Requirement Classification;Journal of Advances in Information Technology;2024
4. Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China;Agricultural Water Management;2023-11
5. Federated learning for feature-fusion based requirement classification;Cluster Computing;2023-10-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3