Competitive Algorithms from Competitive Equilibria

Author:

Im Sungjin1,Kulkarni Janardhan2,Munagala Kamesh3

Affiliation:

1. University of California, Merced, CA

2. Microsoft Research, Redmond, WA

3. Duke University, Durham NC

Abstract

We introduce and study a general scheduling problem that we term the Polytope Scheduling problem (PSP). In this problem, jobs can have different arrival times and sizes, and the rates assigned by the scheduler to the jobs are subject to arbitrary packing constraints. The PSP framework captures a variety of scheduling problems, including the classical problems of unrelated machines scheduling, broadcast scheduling, and scheduling jobs of different parallelizability. It also captures scheduling constraints arising in diverse modern environments ranging from individual computer architectures to data centers. More concretely, PSP models multidimensional resource requirements and parallelizability, as well as network bandwidth requirements found in data center scheduling. We show a surprising result—there is a single algorithm that is O (1) competitive for all PSP instances when the objective is total completion time, and O (1) competitive for a large sub-class of PSP instances when the objective is total flow time. This algorithm simply uses the well-known Proportional Fairness (PF) algorithm to perform allocations each time instant. Though P F has been extensively studied in the context of maximizing fairness in resource allocation, we present the first analysis in adversarial and general settings for optimizing job latency. Further, P F is non-clairvoyant, meaning that the algorithm doesn’t need to know jobs sizes until their completion. We establish our positive results by making novel connections with Economics, in particular, the notions of market clearing, Gross Substitutes, and Eisenberg-Gale markets. We complement these positive results with a negative result: We show that for the total flow time objective, any non-clairvoyant algorithm for general PSP has a strong lower bound on the competitive ratio unless given a poly-logarithmic speed augmentation. This motivates the need to consider sub-classes of PSP when studying flow time. The sub-class for which we obtain positive results not only captures several well-studied models, such as scheduling with speedup curves and related machine scheduling, but also captures as special cases hitherto unstudied scheduling problems, such as single source flow routing, routing multicast (video-on-demand) trees, and resource allocation with substitute resources.

Funder

National Science Foundatio

Army Research Office

Cisco

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3