Handles revisited

Author:

Kalibera Tomas1,Jones Richard1

Affiliation:

1. University of Kent, Canterbury, United Kingdom

Abstract

Compacting garbage collectors must update all references to objects they move. Updating is a lengthy operation but the updates must be transparent to the mutator. The consequence is that no space can be reclaimed until all references have been updated which, in a real-time collector, must be done incrementally. One solution is to replace direct references to objects with handles. Handles offer several advantages to a real-time collector. They eliminate the updating problem. They allow immediate reuse of the space used by evacuated objects. They incur no copy reserve overhead. However, the execution time overhead of handles has led to them being abandoned by most modern systems. We re-examine this decision in the context of real-time garbage collection, for which several systems with handles have appeared recently. We provide the first thorough study of the overheads of handles, based on an optimised implementation of different handle designs within Ovm's Minuteman real-time collector. We find that with a good set of optimisations handles are not very expensive. We obtained zero overhead over the widely used Brooks-style compacting collector (1.6% and 3.1% on two other platforms) and 9% increase in memory usage. Our optimisations are particularly applicable to mark-compact collectors, but may also be useful to other collectors.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transactional Sapphire;ACM Transactions on Programming Languages and Systems;2018-12-31

2. Cross-component garbage collection;Proceedings of the ACM on Programming Languages;2018-10-24

3. DataMill: a distributed heterogeneous infrastructure forrobust experimentation;Software: Practice and Experience;2015-12-08

4. Building the Java Heap with Bricks in an Embedded Real-Time Environment;2014 IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications;2014-10

5. A simple distributed garbage collector for distributed real-time Java;The Journal of Supercomputing;2014-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3