A survey of intelligent assistants for data analysis

Author:

Serban Floarea1,Vanschoren Joaquin2,Kietz Jörg-Uwe1,Bernstein Abraham1

Affiliation:

1. University of Zurich, Zurich, Switzerland

2. Katholieke Universiteit Leuven, The Netherlands

Abstract

Research and industry increasingly make use of large amounts of data to guide decision-making. To do this, however, data needs to be analyzed in typically nontrivial refinement processes, which require technical expertise about methods and algorithms, experience with how a precise analysis should proceed, and knowledge about an exploding number of analytic approaches. To alleviate these problems, a plethora of different systems have been proposed that “intelligently” help users to analyze their data. This article provides a first survey to almost 30 years of research on intelligent discovery assistants (IDAs). It explicates the types of help IDAs can provide to users and the kinds of (background) knowledge they leverage to provide this help. Furthermore, it provides an overview of the systems developed over the past years, identifies their most important features, and sketches an ideal future IDA as well as the challenges on the road ahead.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Seventh Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. "It's like a rubber duck that talks back": Understanding Generative AI-Assisted Data Analysis Workflows through a Participatory Prompting Study;Proceedings of the 3rd Annual Meeting of the Symposium on Human-Computer Interaction for Work;2024-06-25

2. Situational Data Integration in Question Answering systems: a survey over two decades;Knowledge and Information Systems;2024-06-18

3. Assisted design of data science pipelines;The VLDB Journal;2024-02-13

4. AutonoML: Towards an Integrated Framework for Autonomous Machine Learning;Foundations and Trends® in Machine Learning;2024

5. Constraint-Driven Complexity-Aware Data Science Workflow for AutoBDA;IEEE Transactions on Big Data;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3