Affiliation:
1. Indraprastha Institute of Information Technology-Delhi, Okhla Industrial Estate, Phase III, India
Abstract
This work proposes a new approach for dynamical modeling; we call it sequential transform learning. This is loosely based on the transform (analysis dictionary) learning formulation. This is the first work on this topic. Transform learning, was originally developed for static problems; we modify it to model dynamical systems by introducing a feedback loop. The learnt transform coefficients for the
t
th instant are fed back along with the
t
+ 1st sample, thereby establishing a Markovian relationship. Furthermore, the formulation is made supervised by the label consistency cost. Our approach keeps the best of two worlds, marrying the interpretability and uncertainty measure of signal processing with the function approximation ability of neural networks. We have carried out experiments on one of the most challenging problems in dynamical modeling - stock forecasting. Benchmarking with the state-of-the-art has shown that our method excels over the rest.
Publisher
Association for Computing Machinery (ACM)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献