Run-Time Prevention of Software Integration Failures of Machine Learning APIs

Author:

Wan Chengcheng1ORCID,Liu Yuhan2ORCID,Du Kuntai2ORCID,Hoffmann Henry2ORCID,Jiang Junchen2ORCID,Maire Michael2ORCID,Lu Shan3ORCID

Affiliation:

1. East China Normal University, Shanghai, China

2. University of Chicago, Chicago, USA

3. Microsoft, Redmond, USA / University of Chicago, Chicago, USA

Abstract

Due to the under-specified interfaces, developers face challenges in correctly integrating machine learning (ML) APIs in software. Even when the ML API and the software are well designed on their own, the resulting application misbehaves when the API output is incompatible with the software. It is desirable to have an adapter that converts ML API output at runtime to better fit the software need and prevent integration failures. In this paper, we conduct an empirical study to understand ML API integration problems in real-world applications. Guided by this study, we present SmartGear, a tool that automatically detects and converts mismatching or incorrect ML API output at run time, serving as a middle layer between ML API and software. Our evaluation on a variety of open-source applications shows that SmartGear detects 70% incompatible API outputs and prevents 67% potential integration failures, outperforming alternative solutions.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference86 articles.

1. Aander-ETL. 2017. A smart album application. Online document. https://github.com/Grusinator/Aander-ETL Aander-ETL. 2017. A smart album application. Online document. https://github.com/Grusinator/Aander-ETL

2. Amazon. 2022. Amazon artificial intelligence service. Online document. https://aws.amazon.com/machine-learning/ai-services Amazon. 2022. Amazon artificial intelligence service. Online document. https://aws.amazon.com/machine-learning/ai-services

3. Amazon. 2022. Amazon Rekognition Image. Online document. https://aws.amazon.com/rekognition/image-features/ Amazon. 2022. Amazon Rekognition Image. Online document. https://aws.amazon.com/rekognition/image-features/

4. Saleema Amershi Andrew Begel Christian Bird Robert DeLine Harald Gall Ece Kamar Nachiappan Nagappan Besmira Nushi and Thomas Zimmermann. 2019. Software engineering for machine learning: A case study. In ICSE-SEIP. 291–300. https://doi.org/0.1109/ICSE-SEIP.2019.00042 Saleema Amershi Andrew Begel Christian Bird Robert DeLine Harald Gall Ece Kamar Nachiappan Nagappan Besmira Nushi and Thomas Zimmermann. 2019. Software engineering for machine learning: A case study. In ICSE-SEIP. 291–300. https://doi.org/0.1109/ICSE-SEIP.2019.00042

5. An exploratory study on faults in web API integration in a large-scale payment company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3