DDoS2Vec: Flow-Level Characterisation of Volumetric DDoS Attacks at Scale

Author:

Singh Samra Ravjot1ORCID,Barcellos Marinho1ORCID

Affiliation:

1. University of Waikato, Hamilton, New Zealand

Abstract

Volumetric Distributed Denial of Service (DDoS) attacks have been a severe threat to the Internet for more than two decades. Some success in mitigation has been achieved based on numerous defensive techniques created by the research community, implemented by the industry, and deployed by network operators. However, evolution is not a privilege of mitigations, and DDoS attackers have found better strategies and continue to cause harm. A key challenge in winning this race is understanding the various characteristics of DDoS attacks in network traffic at scale and in a realistic manner. In this paper, we propose DDoS2Vec, a novel approach to characterise DDoS attacks in real-world Internet traffic using Natural Language Processing (NLP) techniques. DDoS2Vec is a domain-specific application of Latent Semantic Analysis that learns vector representations of potential DDoS attacks. We look into the link between natural language and computer network communication in a way that has not been previously studied. Our approach is evaluated on a large-scale dataset of flow samples collected from an Internet eXchange Point (IXP) in one year. We evaluate the performance of DDoS2Vec via multi-label classification in a Machine Learning (ML) scenario. DDoS2Vec characterises DDoS attacks more clearly than other baselines - including NLP-based approaches inspired by recent networks research and a basic non-NLP solution.

Publisher

Association for Computing Machinery (ACM)

Reference61 articles.

1. Machine Learning Approaches for Combating Distributed Denial of Service Attacks in Modern Networking Environments

2. Preventing Internet denial-of-service with capabilities

3. Daniel Arp , Erwin Quiring , Feargus Pendlebury , Alexander Warnecke , Fabio Pierazzi , Christian Wressnegger , Lorenzo Cavallaro and Konrad Rieck . 2020 . Dos and Don'ts of Machine Learning in Computer Security . In USENIX Security Symposium. https://arxiv.org/abs/2010 .09470. Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro and Konrad Rieck. 2020. Dos and Don'ts of Machine Learning in Computer Security. In USENIX Security Symposium. https://arxiv.org/abs/2010.09470.

4. Deep Packet Inspection as a Service

5. XGBoost

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3