Eliciting Confidence for Improving Crowdsourced Audio Annotations

Author:

Méndez Méndez Ana Elisa1,Cartwright Mark2,Bello Juan Pablo1,Nov Oded1

Affiliation:

1. New York University, New York, NY, USA

2. New Jersey Institute of Technology & New York University, Newark, NJ, USA

Abstract

In this work we explore confidence elicitation methods for crowdsourcing "soft" labels, e.g., probability estimates, to reduce the annotation costs for domains with ambiguous data. Machine learning research has shown that such "soft" labels are more informative and can reduce the data requirements when training supervised machine learning models. By reducing the number of required labels, we can reduce the costs of slow annotation processes such as audio annotation. In our experiments we evaluated three confidence elicitation methods: 1) "No Confidence" elicitation, 2) "Simple Confidence" elicitation, and 3) "Betting" mechanism for confidence elicitation, at both individual (i.e., per participant) and aggregate (i.e., crowd) levels. In addition, we evaluated the interaction between confidence elicitation methods, annotation types (binary, probability, and z-score derived probability), and "soft" versus "hard" (i.e., binarized) aggregate labels. Our results show that both confidence elicitation mechanisms result in higher annotation quality than the "No Confidence" mechanism for binary annotations at both participant and recording levels. In addition, when aggregating labels at the recording level, results indicate that we can achieve comparable results to those with 10-participant aggregate annotations using fewer annotators if we aggregate "soft" labels instead of "hard" labels. These results suggest that for binary audio annotation using a confidence elicitation mechanism and aggregating continuous labels we can obtain higher annotation quality, more informative labels, with quality differences more pronounced with fewer participants. Finally, we propose a way of integrating these confidence elicitation methods into a two-stage, multi-label annotation pipeline.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Human-Computer Interaction,Social Sciences (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RCTD: Reputation-Constrained Truth Discovery in Sybil Attack Crowdsourcing Environment;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3