Integrating Document Clustering and Multidocument Summarization

Author:

Wang Dingding1,Zhu Shenghuo2,Li Tao1,Chi Yun2,Gong Yihong2

Affiliation:

1. Florida International University

2. NEC Laboratories America

Abstract

Document understanding techniques such as document clustering and multidocument summarization have been receiving much attention recently. Current document clustering methods usually represent the given collection of documents as a document-term matrix and then conduct the clustering process. Although many of these clustering methods can group the documents effectively, it is still hard for people to capture the meaning of the documents since there is no satisfactory interpretation for each document cluster. A straightforward solution is to first cluster the documents and then summarize each document cluster using summarization methods. However, most of the current summarization methods are solely based on the sentence-term matrix and ignore the context dependence of the sentences. As a result, the generated summaries lack guidance from the document clusters. In this article, we propose a new language model to simultaneously cluster and summarize documents by making use of both the document-term and sentence-term matrices. By utilizing the mutual influence of document clustering and summarization, our method makes; (1) a better document clustering method with more meaningful interpretation; and (2) an effective document summarization method with guidance from document clustering. Experimental results on various document datasets show the effectiveness of our proposed method and the high interpretability of the generated summaries.

Funder

Division of Information and Intelligent Systems

Division of Computing and Communication Foundations

Division of Mathematical Sciences

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference57 articles.

1. Blei D. M. Ng A. Y. and Jordan M. I. 2002. Latent Dirichlet allocation. In Advances in Neural Information Processing Systems 14 T. G. Dietterich S. Becker and Z. Ghahramani Eds. MIT Press Cambridge MA 601--608. Blei D. M. Ng A. Y. and Jordan M. I. 2002. Latent Dirichlet allocation. In Advances in Neural Information Processing Systems 14 T. G. Dietterich S. Becker and Z. Ghahramani Eds. MIT Press Cambridge MA 601--608.

2. Text summarization via hidden Markov models

3. Co-clustering documents and words using bipartite spectral graph partitioning

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3