Survey on Activation Functions for Optical Neural Networks

Author:

Destras Oceane1ORCID,Le Beux Sébastien2ORCID,De Magalhães Felipe Gohring1ORCID,Nicolescu Gabriela1ORCID

Affiliation:

1. Ecole polytechnique de Montreal, Canada

2. Concordia university, Canada

Abstract

Integrated photonics arises as a fast and energy-efficient technology for the implementation of artificial neural networks (ANNs). Indeed, with the growing interest in ANNs, photonics shows great promise to overcome current limitations of electronic-based implementation. For example, it has been shown that neural networks integrating optical matrix multiplications can potentially run two orders of magnitude faster than their electronic counterparts. However, the transposition in the optical domain of the activation functions, which is a key feature of ANNs, remains a challenge. There is no direct optical implementation of state-of-the-art activation functions. Currently, most designs require time-consuming and power-hungry electro-optical conversions. In this survey, we review both all-optical and opto-electronic activation functions proposed in the state-of-the-art. We present activation functions with their key characteristics, and we summarize challenges for their use in the context of all-optical neural networks. We then highlight research directions for the implementation of fully optical neural networks.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference88 articles.

1. Ion Stoica et al. 2017. A Berkeley View of Systems Challenges for AI. Retrieved from https://arXiv:cs.AI/1712.05855

2. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks;al Yu-Hsin Chen et;IEEE J. Solid-State Circ.,2016

3. Deep learning with coherent nanophotonic circuits

4. Photonic Neural Networks: A Survey

5. Optimal design for universal multiport interferometers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3