Risk detection and prediction from indoor tracking data

Author:

Ahmed Tanvir1,Calders Toon2,Lu Hua3,Pedersen Torben Bach3

Affiliation:

1. RadioAnalyzer ApS, Denmark

2. University of Antwerp and Université Libre de Bruxelles, Belgium

3. Aalborg University, Denmark

Abstract

Technologies such as RFID and Bluetooth have received considerable attention for tracking indoor moving objects. In a time-critical indoor tracking scenario such as airport baggage handling, a bag has to move through a sequence of locations until it is loaded into the aircraft. Inefficiency or inaccuracy at any step can make the bag risky, i.e., the bag may be delayed at the airport or sent to a wrong airport. In this paper, we discuss a risk detection and a risk prediction method for such kinds of indoor moving objects. We propose a data mining methodology for detecting risk factors from RFID baggage tracking data. The factors should identify potential issues in the baggage management. The paper presents the essential steps for pre-processing the unprocessed raw tracking data and discusses how to deal with the class imbalance problem present in the data set. Next, we propose an online risk prediction system for time constrained indoor moving objects, e.g., baggage in an airport. The target is to predict the risk of an object in real-time during its operation so that it can be saved before being mishandled. We build a probabilistic flow graph that captures object flow and transition times using least duration probability histograms, which in turn is used to obtain a risk score of an online object in risk prediction.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3