Affiliation:
1. School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
2. College of Computer Science and Technology, National University of Defense Technology, Changsha, China
Abstract
Location prediction has attracted much attention due to its important role in many location-based services, including taxi services, route navigation, traffic planning, and location-based advertisements. Traditional methods only use spatial-temporal trajectory data to predict where a user will go next. The divorce of semantic knowledge from the spatial-temporal one inhibits our better understanding of users’ activities. Inspired by the architecture of Long Short Term Memory (LSTM), we design ST-LSTM, which draws on semantic trajectories to predict future locations. Semantic data add a new dimension to our study, increasing the accuracy of prediction. Since semantic trajectories are sparser than the spatial-temporal ones, we propose a strategic filling algorithm to solve this problem. In addition, as the prediction is based on the historical trajectories of users, the cold-start problem arises. We build a new virtual social network for users to resolve the issue. Experiments on two real-world datasets show that the performance of our method is superior to those of the baselines.
Funder
National Science Foundation of China
National Key R&D Program of China
Key Research and Development Program of Shaanxi
Innovation Capability Support Plan of Shaanxi
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献