Stateful Defenses for Machine Learning Models Are Not Yet Secure Against Black-box Attacks

Author:

Feng Ryan1ORCID,Hooda Ashish2ORCID,Mangaokar Neal1ORCID,Fawaz Kassem2ORCID,Jha Somesh2ORCID,Prakash Atul1ORCID

Affiliation:

1. University of Michigan, Ann Arbor, MI, USA

2. University of Wisconsin-Madison, Madison, WI, USA

Funder

Defense Advanced Research Projects Agency

National Science Foundation

Publisher

ACM

Reference46 articles.

1. Amazon. [n. d.]. Amazon Rekognition: Automate your image recognition and video analysis with machine learning. https://aws.amazon.com/rekognition/

2. Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. 2020. Square attack: a query-efficient black-box adversarial attack via random search. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXIII. Springer, 484--501.

3. Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In International conference on machine learning. PMLR, 274--283.

4. Amin Azmoodeh, Ali Dehghantanha, and Kim-Kwang Raymond Choo. 2018. Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning. IEEE transactions on sustainable computing, Vol. 4, 1 (2018), 88--95.

5. Sean Bell and Kavita Bala. 2015. Learning visual similarity for product design with convolutional neural networks. ACM transactions on graphics (TOG), Vol. 34, 4 (2015), 1--10.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Protecting On-Device Machine Learning with RISC-V based Multi-Enclave TEE;2024 33rd International Conference on Computer Communications and Networks (ICCCN);2024-07-29

2. L-AutoDA: Large Language Models for Automatically Evolving Decision-based Adversarial Attacks;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

3. D4: Detection of Adversarial Diffusion Deepfakes Using Disjoint Ensembles;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3