Object-level Hyperspectral Target Detection Based on Spectral-Spatial Features Integrated YOLOv4-Tiny Network

Author:

Nie Jinyan1,Guo Jian2,Xu Qizhi3

Affiliation:

1. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, China

2. School of Computer Science and Technology, Beijing Institute of Technology, China

3. School of Mechatronical Engineering, Beijing Institute of Technology, China

Funder

National Natural Science Foundation of China

Publisher

ACM

Reference26 articles.

1. Nasrabadi , N. M. ( 2013 ). Hyperspectral target detection: An overview of current and future challenges.  IEEE Signal Processing Magazine, 31 (1), 34-44 . Nasrabadi, N. M. (2013). Hyperspectral target detection: An overview of current and future challenges.  IEEE Signal Processing Magazine, 31 (1), 34-44.

2. Manolakis , D. , Marden , D. , & Shaw , G. A. ( 2003 ). Hyperspectral image processing for automatic target detection applications.  Lincoln laboratory journal, 14 (1), 79-116 . Manolakis, D., Marden, D., & Shaw, G. A. (2003). Hyperspectral image processing for automatic target detection applications.  Lincoln laboratory journal, 14 (1), 79-116.

3. Sharifi Hashjin , S. , & Khazai , S. ( 2020 ). A new method to detect targets in hyperspectral images based on principal component analysis.  Geocarto International, 1-19 . Sharifi Hashjin, S., & Khazai, S. (2020). A new method to detect targets in hyperspectral images based on principal component analysis.  Geocarto International, 1-19.

4. Du , Q. , Ren , H. , & Chang , C. I. ( 2003 ). A comparative study for orthogonal subspace projection and constrained energy minimization.  IEEE Transactions on Geoscience and Remote Sensing, 41 (6), 1525-1529 . Du, Q., Ren, H., & Chang, C. I. (2003). A comparative study for orthogonal subspace projection and constrained energy minimization.  IEEE Transactions on Geoscience and Remote Sensing, 41 (6), 1525-1529.

5. Ren , H. , Du , Q. , Chang , C. I. , & Jensen , J. O. ( 2003 , October). Comparison between constrained energy minimization based approaches for hyperspectral imagery . In  IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data , 2003 (pp. 244-248). IEEE. Ren, H., Du, Q., Chang, C. I., & Jensen, J. O. (2003, October). Comparison between constrained energy minimization based approaches for hyperspectral imagery. In  IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003 (pp. 244-248). IEEE.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SSFDD: Spectral-Spatial Feature Decoupled Detector for Box-Level Object Detection in Hyperspectral Images;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Deep Learning-Based Architectures For Multimodal Instance Segmentation;2023 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS);2023-10-31

3. A Transfer-Based Framework for Underwater Target Detection from Hyperspectral Imagery;Remote Sensing;2023-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3