A survey of online failure prediction methods

Author:

Salfner Felix1,Lenk Maren1,Malek Miroslaw1

Affiliation:

1. Humboldt-Universität zu Berlin, Germany

Abstract

With the ever-growing complexity and dynamicity of computer systems, proactive fault management is an effective approach to enhancing availability. Online failure prediction is the key to such techniques. In contrast to classical reliability methods, online failure prediction is based on runtime monitoring and a variety of models and methods that use the current state of a system and, frequently, the past experience as well. This survey describes these methods. To capture the wide spectrum of approaches concerning this area, a taxonomy has been developed, whose different approaches are explained and major concepts are described in detail.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference126 articles.

1. Aitchison J. and Dunsmore I. R. 1975. Statistical Prediction Analysis. Cambridge University Press Cambridge U.K. Aitchison J. and Dunsmore I. R. 1975. Statistical Prediction Analysis. Cambridge University Press Cambridge U.K.

2. Altman D. G. 1991. Practical Statistics for Medical Research. CRC Press Boca Raton FL. Altman D. G. 1991. Practical Statistics for Medical Research. CRC Press Boca Raton FL.

3. Basic local alignment search tool

Cited by 359 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Validity constraints for data analysis workflows;Future Generation Computer Systems;2024-08

2. Forecasting Events within Temporal Intervals using First Occurrence Distributions;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Systematic Evaluation of Deep Learning Models for Log-based Failure Prediction;Empirical Software Engineering;2024-06-20

4. A review of research on diagnosability of control systems;Energy Reports;2024-06

5. Statistical Process Control for Supporting OS-level Failure Prediction;Anais do XXV Workshop de Testes e Tolerância a Falhas (WTF 2024);2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3