Randomized Moving Target Approach for MAC-Layer Spoofing Detection and Prevention in IoT Systems

Author:

Madani Pooria1ORCID,Vlajic Natalija1ORCID,Maljevic Ivo2ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada

2. Department of Technology Strategy, Telus Communications Inc., Canada

Abstract

MAC-layer spoofing, also known as identity spoofing, is recognized as a serious problem in many practical wireless systems. IoT systems are particularly vulnerable to this type of attack as IoT devices (due to their various limitations) are often incapable of deploying advanced MAC-layer spoofing prevention and detection techniques, such as cryptographic authentication. Signal-level device fingerprinting is an approach to identity spoofing detection that is highly suitable for sensor-based IoT networks but can be also utilized in many other types of wireless systems. Previous research works on signal-level device fingerprinting have been based on rather simplistic assumptions about both the adversary’s behavior and the operation of the defense system. The goal of our work was to examine the effectiveness of a novel system that combines signal-level device fingerprinting with the principles of Randomized Moving Target Defense (RMTD) when dealing with a very advanced adversary. The obtained results show that our RMTD-enhanced signal-level device fingerprinting technique exhibits far superior defense performance over the non-RMTD techniques previously discussed in the literature and, as such, could be of great value for practical wireless systems subjected to identity spoofing attacks. We have also introduced a novel proof-of-concept adaptive parameter tuning approach for system practitioners with the ability to encode their risk profile and compute the most efficient hyper-parameters of our proposed defense system.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Safety Research,Information Systems,Software

Reference35 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3