E2HRL: An Energy-efficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning

Author:

Shiri Aidin1ORCID,Kallakuri Uttej1,Rashid Hasib-Al1,Prakash Bharat1,Waytowich Nicholas R.2,Oates Tim1,Mohsenin Tinoosh1

Affiliation:

1. University of Maryland Baltimore County, USA

2. Army Research Laboratory, USA

Abstract

Recently, Reinforcement Learning (RL) has shown great performance in solving sequential decision-making and control in dynamic environment problems. Despite its achievements, deploying Deep Neural Network (DNN)-based RL is expensive in terms of time and power due to the large number of episodes required to train agents with high dimensional image representations. Additionally, at the interference the large energy footprint of deep neural networks can be a major drawback. Embedded edge devices as the main platform for deploying RL applications are intrinsically resource-constrained and deploying deep neural network-based RL on them is a challenging task. As a result, reducing the number of actions taken by the RL agent to learn desired policy, along with the energy-efficient deployment of RL, is crucial. In this article, we propose Energy Efficient Hierarchical Reinforcement Learning (E2HRL), which is a scalable hardware architecture for RL applications. E2HRL utilizes a cross-layer design methodology for achieving better energy efficiency, smaller model size, higher accuracy, and system integration at the software and hardware layers. Our proposed model for RL agent is designed based on the learning hierarchical policies, which makes the network architecture more efficient for implementation on mobile devices. We evaluated our model in three different RL environments with different level of complexity. Simulation results with our analysis illustrate that hierarchical policy learning with several levels of control improves RL agents training efficiency and the agent learns the desired policy faster compared to a non-hierarchical model. This improvement is specifically more observable as the environment or the task becomes more complex with multiple objective subgoals. We tested our model with different hyperparameters to achieve the maximum reward by the RL agent while minimizing the model size, parameters, and required number of operations. E2HRL model enables efficient deployment of RL agent on resource-constraint-embedded devices with the proposed custom hardware architecture that is scalable and fully parameterized with respect to the number of input channels, filter size, and depth. The number of processing engines (PE) in the proposed hardware can vary between 1 to 8, which provides the flexibility of tradeoff of different factors such as latency, throughput, power, and energy efficiency. By performing a systematic hardware parameter analysis and design space exploration, we implemented the most energy-efficient hardware architectures of E2HRL on Xilinx Artix-7 FPGA and NVIDIA Jetson TX2. Comparing the implementation results shows Jetson TX2 boards achieve 0.1 ∼ 1.3 GOP/S/W energy efficiency while Artix-7 FPGA achieves 1.1 ∼ 11.4 GOP/S/W, which denotes 8.8× ∼ 11× better energy efficiency of E2HRL when model is implemented on FPGA. Additionally, compared to similar works our design shows better performance and energy efficiency.

Funder

U.S. Army Research Laboratory

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference45 articles.

1. NVIDIA. 2020. NVIDIA jetson TX2. Retrieved from https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/.

2. Jacob Andreas, Dan Klein, and Sergey Levine. 2017. Modular multitask reinforcement learning with policy sketches. In Proceedings of the International Conference on Machine Learning. PMLR, 166–175.

3. The Option-Critic Architecture

4. Maxime Chevalier-Boisvert. 2018. Gym-MiniWorld environment for OpenAI Gym. Retrieved from https://github.com/maximecb/gym-miniworld.

5. FA3C

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards an international regulatory framework for AI safety: lessons from the IAEA’s nuclear safety regulations;Humanities and Social Sciences Communications;2024-04-12

2. Deploying Deep Reinforcement Learning Systems: A Taxonomy of Challenges;2023 IEEE International Conference on Software Maintenance and Evolution (ICSME);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3