PPLib

Author:

Boer Patrick M. De1,Bernstein Abraham1

Affiliation:

1. University of Zurich, Binzmühlestrasse, Zürich

Abstract

Crowdsourcing is increasingly being adopted to solve simple tasks such as image labeling and object tagging, as well as more complex tasks, where crowd workers collaborate in processes with interdependent steps. For the whole range of complexity, research has yielded numerous patterns for coordinating crowd workers in order to optimize crowd accuracy, efficiency, and cost. Process designers, however, often don't know which pattern to apply to a problem at hand when designing new applications for crowdsourcing. In this article, we propose to solve this problem by systematically exploring the design space of complex crowdsourced tasks via automated recombination and auto-experimentation for an issue at hand. Specifically, we propose an approach to finding the optimal process for a given problem by defining the deep structure of the problem in terms of its abstract operators, generating all possible alternatives via the (re)combination of the abstract deep structure with concrete implementations from a Process Repository, and then establishing the best alternative via auto-experimentation. To evaluate our approach, we implemented PPLib (pronounced “People Lib”), a program library that allows for the automated recombination of known processes stored in an easily extensible Process Repository. We evaluated our work by generating and running a plethora of process candidates in two scenarios on Amazon's Mechanical Turk followed by a meta-evaluation, where we looked at the differences between the two evaluations. Our first scenario addressed the problem of text translation, where our automatic recombination produced multiple processes whose performance almost matched the benchmark established by an expert translation. In our second evaluation, we focused on text shortening; we automatically generated 41 crowd process candidates, among them variations of the well-established Find-Fix-Verify process. While Find-Fix-Verify performed well in this setting, our recombination engine produced five processes that repeatedly yielded better results. We close the article by comparing the two settings where the Recombinator was used, and empirically show that the individual processes performed differently in the two settings, which led us to contend that there is no unifying formula, hence emphasizing the necessity for recombination.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Programming Model for Hybrid Collaborative Adaptive Systems;IEEE Transactions on Emerging Topics in Computing;2020-01-01

2. Efficiently Identifying a Well-Performing Crowd Process for a Given Problem;Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing;2017-02-25

3. Web Reasoning and Rule Systems;Lecture Notes in Computer Science;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3