Evolution of synthetic RTL benchmark circuits with predefined testability

Author:

Pecenka Tomas1,Sekanina Lukas2,Kotasek Zdenek2

Affiliation:

1. ON Semiconductor, Roznov pod Radhostem, Czech Republic

2. Brno University of Technology, Brno, Czech Republic

Abstract

This article presents a new real-world application of evolutionary computing in the area of digital-circuits testing. A method is described which enables to evolve large synthetic RTL benchmark circuits with a predefined structure and testability. Using the proposed method, a new collection of synthetic benchmark circuits was developed. These benchmark circuits will be useful in a validation process of novel algorithms and tools in the area of digital-circuits testing. Evolved benchmark circuits currently represent the most complex benchmark circuits with a known level of testability. Furthermore, these circuits are the largest that have ever been designed by means of evolutionary algorithms. This work also investigates suitable parameters of the evolutionary algorithm for this problem and explores the limits in the complexity of evolved circuits.

Funder

Grant Agency of the Czech Republic

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference35 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthetic Benchmark for Data-Driven Pre-Si Analogue Circuit Verification;Electronics;2024-07-02

2. Graph-based genetic programming;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2022-07-09

3. Scalable Synthetic Circuit Generation using Geometry Embedding for CAD Tool Assessment;2022 IEEE International Symposium on Circuits and Systems (ISCAS);2022-05-28

4. Generating Synthetic MVL Benchmarks from Random MDDs Under Restrictions;2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL);2018-05

5. Evolvable Hardware Challenges: Past, Present and the Path to a Promising Future;Inspired by Nature;2017-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3