Cross-Platform Emerging Topic Detection and Elaboration from Multimedia Streams

Author:

Bao Bing-Kun1,Xu Changsheng1,Min Weiqing1,Hossain Mohammod Shamim2

Affiliation:

1. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

2. College of Computer and Information Sciences, King Saud University

Abstract

With the explosive growth of online media platforms in recent years, it becomes more and more attractive to provide users a solution of emerging topic detection and elaboration. And this posts a real challenge to both industrial and academic researchers because of the overwhelming information available in multiple modalities and with large outlier noises. This article provides a method on emerging topic detection and elaboration using multimedia streams cross different online platforms. Specifically, Twitter, New York Times and Flickr are selected for the work to represent the microblog, news portal and imaging sharing platforms. The emerging keywords of Twitter are firstly extracted using aging theory. Then, to overcome the nature of short length message in microblog, Robust Cross-Platform Multimedia Co-Clustering (RCPMM-CC) is proposed to detect emerging topics with three novelties: 1) The data from different media platforms are in multimodalities; 2) The coclustering is processed based on a pairwise correlated structure, in which the involved three media platforms are pairwise dependent; 3) The noninformative samples are automatically pruned away at the same time of coclustering. In the last step of cross-platform elaboration, we enrich each emerging topic with the samples from New York Times and Flickr by computing the implicit links between social topics and samples from selected news and Flickr image clusters, which are obtained by RCPMM-CC. Qualitative and quantitative evaluation results demonstrate the effectiveness of our method.

Funder

Project 2012CB316304, in part by the National Natural Science Foundation of China

National Program on Key Basic Research Project 973 Program

Beijing Natural Science Foundation (4152053 and 4131004)

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-modal topic modeling from social media data using deep transfer learning;Applied Soft Computing;2024-07

2. Shot Boundary Detection Using Color Clustering and Attention Mechanism;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-07-12

3. Cross-Media Topic Detection: Approaches, Challenges, and Applications;Computer Vision and Machine Intelligence;2023

4. Qualitative Modeling to Extract Knowledge for Problem Structuring;Translational Systems Sciences;2023

5. Heterogeneous Information Fusion based Topic Detection from Social Media Data;Information Systems Frontiers;2022-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3